Telegram Group & Telegram Channel
Как вы работали бы с несбалансированным набором данных?

В несбалансированном наборе данных объектов одного класса намного больше, чем объектов другого. Например, в датасете с транзакциями только 400 являются мошенническими, а 300 тысяч — нет. Из-за этого модель может хуже определять мошеннические транзакции.

Чтобы бороться с этим, используют несколько подходов:
🟡 Undersampling. Удаление некоторого количества примеров преобладающего класса.
🟡 Oversampling. Увеличение количества примеров класса, который находится в меньшинстве.
🟡 Комбинирование undersampling и oversampling.
🟡 Создание синтетических данных. Для этого можно использовать SMOTE (англ. Synthetic Minority Oversampling Technique). Алгоритм генерирует некоторое количество искусственных примеров, похожих на имеющиеся в меньшем классе.

Также можно применять взвешивание классов, при котором модель будет сильнее штрафовать за ошибки на меньшем классе. Кроме того, ансамблевые методы могут помочь уменьшить эффект несбалансированности.



tg-me.com/ds_interview_lib/99
Create:
Last Update:

Как вы работали бы с несбалансированным набором данных?

В несбалансированном наборе данных объектов одного класса намного больше, чем объектов другого. Например, в датасете с транзакциями только 400 являются мошенническими, а 300 тысяч — нет. Из-за этого модель может хуже определять мошеннические транзакции.

Чтобы бороться с этим, используют несколько подходов:
🟡 Undersampling. Удаление некоторого количества примеров преобладающего класса.
🟡 Oversampling. Увеличение количества примеров класса, который находится в меньшинстве.
🟡 Комбинирование undersampling и oversampling.
🟡 Создание синтетических данных. Для этого можно использовать SMOTE (англ. Synthetic Minority Oversampling Technique). Алгоритм генерирует некоторое количество искусственных примеров, похожих на имеющиеся в меньшем классе.

Также можно применять взвешивание классов, при котором модель будет сильнее штрафовать за ошибки на меньшем классе. Кроме того, ансамблевые методы могут помочь уменьшить эффект несбалансированности.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/99

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA